Characterizing Mechanisms in Obnoxious Facility Game

نویسندگان

  • Ken Ibara
  • Hiroshi Nagamochi
چکیده

In this paper, we study the (group) strategy-proofness of deterministic mechanisms in the obnoxious facility game. In this game, given a set of strategic agents in a metric, we design a mechanism that outputs the location of a facility in the metric based on the locations of the agents reported by themselves. The benefit of an agent is the distance between her location and the facility and the social benefit is the total benefits of all agents. An agent may try to manipulate outputs by the mechanism by misreporting strategically her location. We wish to design a mechanism that is strategy-proof (i.e., no agent can gain her benefit by misreporting) or group strategy-proof (i.e., there is no coalition of agents such that each member in the coalition can simultaneously gain benefit by misreporting), while the social benefit will be maximized. In this paper, we first prove that, in the line metric, there is no strategy-proof mechanism such that the number of candidates (locations output by the mechanism for some reported locations) is more than two. We next completely characterize (group) strategy-proof mechanisms with exactly two candidates in the general metric and show that there exists a 4-approximation group strategy-proof mechanism in any metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Output Locations of GSP Mechanisms to Obnoxious Facility Game in Trees

In the obnoxious facility game with a set of agents in a space, we wish to design a mechanism, a decision-making procedure that determines a location of an undesirable facility based on locations reported by the agents, where we do not know whether the location reported by an agent is where exactly the agent exists in the space. For a location of the facility, the benefit of each agent is defin...

متن کامل

Characterizing GSP Mechanisms to Obnoxious Facility Game in Trees via Output Locations

In the obnoxious facility game with a set of agents in a space, we wish to design a mechanism, a decision-making procedure that determines a location of an undesirable facility based on locations reported by the agents, where we do not know whether the location reported by an agent is where exactly the agent exists in the space. For a location of the facility, the benefit of each agent is defin...

متن کامل

Parameterization of Strategy-Proof Mechanisms in the Obnoxious Facility Game

In the obnoxious facility game, a location for an undesirable facility is to be determined based on the voting of selfish agents. Design of group strategy proof mechanisms has been extensively studied, but it is known that there is a gap between the social benefit (i.e., the sum of individual benefits) by a facility location determined by any group strategy proof mechanism and the maximum socia...

متن کامل

Strategy-Proof Mechanism for Obnoxious Facility Location on a Line

In the problem of obnoxious facility location, an obnoxious facility is located in an area. To maximize the social welfare, e.g., the sum of distances from all the agents to the facility, we have to get the true locations of each agent. However, each agent may misreport his/her location to stay far away from the obnoxious facility. In this paper, we design strategy-proof mechanisms on locating ...

متن کامل

Strategy-proof Mechanism Design for Facility Location Games: Revisited (Extended Abstract)

In facility location games, one aims at designing a mechanism to decide the facility location based on the addresses reported by all agents. In the standard facility location game, each agent wants to minimize the distance from the facility, while in the obnoxious facility game, each agent prefers to be as far away from the facility as possible. In this paper we revisit the two games on a line ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012